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Nonlinear Effects of Weather
on Corn Yields∗

Wolfram Schlenker and Michael J. Roberts

This paper examines the reduced-form relationship between weather
and yields using a unique data set of corn yields and daily weather records

covering the eastern United States for 1950–2004. Since weather variations in a
fixed location are exogenous and random, the reduced-form relationship
constitutes a viable natural experiment and is therefore clearly identified.
Understanding the precise link between heat and crop yields could have
implications for the effects of climate change on food supply. It may also
facilitate the creation of financial instruments that may be used to insure crop
yield risk without inducing moral hazard.

Previous studies examining the link between weather and yields either used
broad aggregate weather measures in a reduced-form regression, or detailed
nonlinear weather interactions in a crop-simulation model, where several
parameters are set by the researcher and not estimated because of data
limitations. This paper provides two key contributions to the literature. First, we
compile a unique data set of daily weather records and combine it with a
fifty-five-year record of corn yields from almost 2,000 U.S. counties to estimate
the relationship between weather and yields. Our data set is unique because it
estimates weather outcomes at the specific locations in each county where crops
are grown and then calculates the time a crop is exposed to each 1◦C temper-
ature interval during a day. Second, these data are detailed enough to allow for a
very flexible functional form to accurately estimate nonlinear impacts of
weather on yields. We are thus able to precisely estimate nonlinearities in the
effect of weather on yields.
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Our approach combines the strengths of the reduced-form approach with
those of crop-simulation models. The reduced-form natural experiment may be
superior to a controlled experiment because we wish to ascertain the consum-
mate effects of weather on yields, which may differ from the effects of weather
ceteris paribus. For example, Deschenes and Greenstone find input responses to
weather fluctuations by regressing average profits and expenditures in each
county from three Census years on average monthly temperatures in four
months of the year, including county-fixed effects. The pervasive problem in this
literature is the way in which weather variables are measured and the limited
flexibility this imposes on the statistical models used to link weather with crop
yields. The weather regressors are mainly average temperatures and
precipitation from one or more months of the growing season. The main
problem with this approach is that it ignores the distribution of weather
outcomes around the averages. This omission is important in light of the
agronomic literature that describes plant growth as a highly nonlinear function
of heat. Multicollinearity is another potential problem, particularly when many
months from the growing season are included in the regression.

Unlike reduced-form regression models, simulation models have a rich
theoretical structure that incorporates complex nonlinearities and interactions of
weather, soil, and applied nutrients (Jones, Kiniry, and Dyke). But given the
complexity of these models, to our knowledge, the micro-parameters have not
been estimated simultaneously in a statistical model with observed yields and
weather data. Rather, the micro-parameters embedded in these models are taken
as “reasonable assumptions” or taken from experimental studies one parameter
at a time. The models also take nutrient applications and planting date as
exogenous. The obvious problems with this approach are that the nature of
weather effects, though based on agronomic principles, is assumed and there is
no accounting for behavioral responses to weather.

The Model
Suppose yield growth is a nonlinear function of heat g(h), so that the log yield,

yit, in county i and year t is

yit =
∫ h̄

h
g(h)�i t(h) dh + zit� + ci + εi t,

where �it(h) is the time distribution of temperatures over the season in county i
and year t; hand h̄ are the lower and upper bounds of temperature observed; zit

are other factors, such as precipitation and technological change; and ci is a
time-invariant county-fixed effect.

Our model, though much simpler than yield simulation models, incorporates
a generalization of growing degree days. Growing degree days are typically
defined as the sum of truncated degrees on a given day between two boundaries
that are summed over the entire growing season. For example, Ritchie and
NeSmith suggest bounds of 8◦C and 32◦C, so temperature of 5◦C, 10◦C, 15◦C,
32◦C, and 35◦C would result in 0, 2, 7, 24, and 24 degree days, respectively.
However, various studies find different degree boundaries as such studies
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usually rely on very few observations. Part of the idea behind our study is to
utilize a much larger data set and identify the appropriate bounds. There is
further uncertainty about the effect of temperature above the upper threshold.
Where the concept of growing degree days assumes plant or yield growth is at
its highest for temperatures equal to the upper bound, it could be that growth
remains at a high plateau above the upper threshold, or that, at some point, heat
actually damages the plant and causes yield to decline. Our flexible functional
form allows us to identify the effect of such extreme heat.

An interesting feature of this simple model is the dimensionless treatment of
time. This feature implies that temperature has the same influence on growth
regardless of past growth. In other words, temperature is perfectly substitutable
over time. In case this assumption were not valid, we should not observe a
significant nonlinear relationship as the random pairing of various temperatures
over a season would not give us any clear identification of the effects of
temperatures in each degree interval. Observing a significant and stable
relationship therefore, is evidence that time substitutability is present.

In our estimation, we discretize the integral over heat (temperature) by using
1◦C intervals ranging from −5◦C to 50◦C. Using �i t(h) as the cumulative
distribution of time with temperatures less than or equal to h, the time
temperatures fall in a 1◦ heat interval (h, h + 1] becomes �i t(h + 1) − �i t(h). We
approximate the nonlinear function g(h) by a mth order Chebychev Polynomial
Tj( ) for j = 1, . . . , m evaluated at interval midpoints to get

Yit =
m∑

j=1

� j

49∑
h=−5

Tj (h + 0.5)[�it(h + 1) − �it(h)]︸ ︷︷ ︸
xit, j

+zit� + εit,

where xij,t is the exogenous variable obtained by summing the jth order
Chebyshev polynomial evaluated at each temperature interval midpoint
multiplied by the time spent in each temperature interval. On the one hand, one
would like to include as many Chebyshev polynomials as possible to allow for a
flexible functional form. Yet inclusion of additional terms comes with a penalty:
increased multicollinearity. Therefore, we successively use higher-order
polynomials until our relationship appears to become stable. We are particularly
interested in the �j, as these coefficients quantify the average effect of
temperatures on yields. The county-fixed effects ci will capture all time-
invariant characteristics of a location-like soil quality. The use of fixed effects
avoids the problem of omitted variables, as they are lumped together in the
fixed effects. In some of the existing literature, identification comes from
differences in weather over the cross section, not over time, and thus may be
susceptible to confounding (see, e.g., Schlenker, Hanemann, and Fisher).

Even though we use fixed effects (which will pick up location-specific
constants), the error terms within a given year might still be spatially correlated
as weather itself is highly spatially correlated; for example, heat waves are
usually not very localized. We use the nonparametric routine by Conley to
adjust the variance–covariance matrix for potential spatial correlation, but force
all spatial correlation only across error terms in the same year.
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The Data
Since we are particularly interested in nonlinear effects of weather, emphasis

is placed on constructing the appropriate distribution of weather variables,
especially temperature. Previous studies traditionally look at average
temperatures over a longer time span, for example, an entire season or a month,
but these averages often hide extreme events like a heat wave of limited
duration. Instead, we choose to examine the distribution of daily temperatures
between the minimum and maximum on a small 2.5 × 2.5 mile grid. The
distribution of daily values can then be aggregated over the entire season.1

Obtaining values on such a small scale requires a spatial smoothing procedure
between daily weather records of individual weather stations. This procedure is
crucial because averaging temperatures over time or across space would bias
estimates of nonlinear effects of temperature on yield.

The “Parameter-Elevation Regressions on Independent Slopes Model”
(PRISM)2 is wildly regarded as one of the best interpolation procedures that
gives small-scale values on a 2.5 × 2.5 mile grid. However, the publicly available
PRISM data give cumulative precipitation values as well as average minimum
and maximum temperature readings on a monthly time scale. We are particularly
interested in daily values, yet these are only available at individual weather
stations.

We combine the advantages of the PRISM model (good spatial interpolation)
with better temporal coverage of individual weather stations (daily rather than
monthly values). We do this by pairing each of the 259,287 PRISM grids that
cover agricultural area with the closest seven weather stations that have a
continuous record of daily observations. A station was defined to have a
continuous record if at least 90% of 1950–2004 were “good” months (one with
three or fewer missing daily values) and if the station was never relocated by
more than 0.035◦ latitude or longitude. The top left panel of figure 1 shows
locations of all weather stations covered by National Oceanic and Atmospheric
Administration (NOAA), while the upper right panel shows locations of the
2,919 stations with continuous precipitation records for 1950–2004. The lower
two panels display locations of the 1,796 stations with continuous minimum
temperature records as well as the 1,818 stations with continuous maximum
temperatures records.

We regress monthly averages at each PRISM cell on the derived monthly
averages at each of the seven closest stations, including month-fixed effects. The
R2 for ordinary least squares (OLS) regressions linking minimum and maximum
temperatures to the seven closest weather stations and for the Tobit regressions
for nonnegative precipitation values equal 0.999 on average, which implies a
very good fit.3

In a next step, we replace all missing values at our set of weather stations with
interpolated values from other stations with nonmissing values. We do so by
regressing daily values at each weather station on the seven closest other weather
stations with nonmissing values for that day, including half-month-fixed
effects.4 This gives a time series of daily values at each of the stationary weather
stations.

The derived relationship between monthly PRISM grid averages and monthly
averages at each of the seven closest stations is utilized to extrapolate the daily
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Figure 1. Location of weather stations

Notes: Top left panel displays location of all NOAA weather stations. Top right, bottom left, and
bottom right panels display station locations where in less than 10% of the 660 months between 1950
and 2004, more than three observations were missing in a given month for each of the following
weather variables: precipitation, minimum temperature, and maximum temperature.
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records at the seven closest weather stations to obtain daily records at each
PRISM grid. Given estimated daily minimum and maximum temperatures, we
use a sinusoidal curve to approximate the fraction of each day in each 1◦C
temperature interval between −5◦C and 50◦C. Finally, we average precipitation
and time at each temperature over all PRISM grid cells in a county that have
positive agricultural area. The agricultural area in each cell was obtained from a
LandSat satellite image.5 All weather variables are summed for the six-month
period March through August. Exogenously fixing this time period allows for
an endogenous choice of the growing season within these months.

We pair the weather data with county-level corn yields reported by the
National Agricultural Statistics Service for the years 1950–2004.

Empirical Estimates
We limit the analysis to eastern counties that rely mainly on rainfall for soil

moisture.6 We end up with 87,619 observations in 1,839 counties for 1950–2004.
The fifth-order Chebychev polynomial between temperature and corn yields is
displayed as a solid line in figure 2. The 95% confidence band, after adjusting for
the spatial correlation of errors within years, is added as a dashed line. Impacts
are normalized relative to a temperature of 8◦C, that is, the y-axis displays the
effect of a twenty-four-hour period at a certain temperature relative to a

Figure 2. Nonlinear relationship between temperature and corn
yields

Notes: Figure displays the impact of a given temperature for a twenty-four-hour period of the growing
season on yearly log yields. The curve is relative to a temperature of 8◦C. The 95% confidence interval
after adjusting for spatial correlation is added as dashed lines.
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twenty-four-hour period at 8◦C. Note how growth is increasing in temperatures
between 12◦C and 25◦C, before it rapidly becomes negative for temperatures in
excess of 30◦C. One day of 38◦C will lower annual corn yields by 5%. The upper
bound of 30◦C (86◦F) when temperatures become harmful is lower than most
estimates in the literature.

The quadratic functional form in precipitation exhibits an inverted U-shape
with an optimal level of 26 inches, which is close to predictions from field
experiments. Since we use a semilog model, the marginal value of heat depends
on precipitation, as the two interact. The R2 for the regression including year
and county-fixed effects is 0.76.

Conclusions
An extensive literature examines the relationship between weather outcomes

and corn yields. Traders of corn futures, risk-management agencies designing
optimal crop insurance contracts, as well as regulators assessing the effects of
climate change, require an accurate relationship between temperature and
yields. In this paper, we utilize a unique fine-scale data set of daily weather
records and link it to corn yields on a large geographic scale covering 1,839
eastern counties for the fifty-five years from 1950 to 2004.

We find a significant nonlinear relationship between temperature and corn
yields that is roughly in line with the concept of degree days: yields are
increasing in temperature for moderate temperatures, but become quickly
harmful once temperatures exceed 30◦C. This relationship is highly significant.

In future work, we plan to investigate whether the relationship is the same for
various subregions, has remained unchanged over time and whether
irrigation/high precipitation moderates the damaging effects of high
temperatures.
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Endnotes
1There are extrapolation methods that link the standard deviation of monthly temperatures to

daily temperatures (Thom). However, these interpolations are based on average daily temperatures
and do not incorporate the distribution within a day.

2See http://www.ocs.orst.edu/prism/.
3Linking the monthly PRISM averages to averages at individual weather stations gives us the

spatial averaging procedure used in the PRISM model.
4To eliminate implausible weather values, we excluded all daily readings of minimum and

maximum temperature that exceeded five times the standard deviation of daily records for the given
month. Like missing values, these values were interpolated from the seven closest stations.

5Vince Breneman and Shawn Bucholtz at the U.S. Department of Agriculture’s Economic Research
Service were kind enough to provide us with the agricultural area in each PRISM grid cell. Since we
use the LandSat scan of a given year, we are not able to pick up shifts in growing regions over time.

6We use all 1,839 counties that report corn yields in the following 24 states: Alabama, Arkansas,
Delaware, Georgia, Illinois, Indiana, Iowa, Kentucky, Louisiana, Maryland, Michigan, Minnesota,
Mississippi, Missouri, New Jersey, New York, North Carolina, Ohio, Pennsylvania, South Carolina,
Tennessee, Virginia, West Virginia, and Wisconsin.
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